
Assessing	Undergraduate	Computer	Programming	Skills

Ewan	Klein

November	4, 2013

Contents
1 Introduction 1
2 Teaching	and	Assessing	Programming 1
3 Infandango 2
4 Infandango	Analytics 3
5 Conclusion	and	Future	Steps 9

1 Introduction

During	the	academic	year	2012/13, I was	seconded	to	the Institute	for	Academic	Development1 from	my	home
department, the School	of	 Informatics2. The	main	 thrust	of	 the	secondment	was	 to	examine	 issues	around
teaching	and	assessing	computer	programming	skills, with	a	focus	on	first	year	undergraduates	in	Informatics.
However, during	the	course	of	the	secondment, in	part	due	to	discussions	with	Velda	McCune	and	Jon	Turner,
I also	invested	time	into	a	couple	of	other	initiatives—InfoPALS (a	peer-assisted	learning	scheme)	and	the Smart
Data	Hack3 —that	were	complementary	to	my	original	goals	and	which	had	not	been	part	of	my	initial	plan.
However, in	this	document, I will	focus	on	one	component	of	my	work	on	assessing	computer	programming.

2 Teaching	and	Assessing	Programming

There	is	a	considerable	body	of	work	on	the	pedagogy	of	computer	programming, and	recently	a	lot	of	attention
has	been	paid	to	the	notion	of computational	thinking4 as	a	key	competence; see	for	example these	slides	by
Quintin	Cutts5. In	this	context, computational	thinking	involves	two	aspects: analysing	a	problem	at	different
levels	of	abstraction; and	breaking	down	its	solutions	into	steps	which	can	be	defined	in	an	explicit, ’mechanical’
way. However, programming	involves	more	than	this. An	acquaintance	with	basic	maths	is	helpful	(and	is
required	of	all	students	in	the	School	of	Informatics), together	with	some	degree	of	problem-solving	ability. In

1http://www.ed.ac.uk/schools-departments/institute-academic-development
2http://www.ed.ac.uk/schools-departments/informatics
3http://www.inf.ed.ac.uk/student-services/committees/teaching-committee/meetings/6th-march-2013/

ILWHackReport.pdf
4http://www.cs.cmu.edu/~CompThink/
5http://www.slideshare.net/compatsch/quintin-cutts

1

http://www.ed.ac.uk/schools-departments/institute-academic-development
http://www.ed.ac.uk/schools-departments/informatics
http://www.inf.ed.ac.uk/student-services/committees/teaching-committee/meetings/6th-march-2013/ILWHackReport.pdf
http://www.inf.ed.ac.uk/student-services/committees/teaching-committee/meetings/6th-march-2013/ILWHackReport.pdf
http://www.cs.cmu.edu/~CompThink/
http://www.slideshare.net/compatsch/quintin-cutts
http://www.slideshare.net/compatsch/quintin-cutts
http://www.ed.ac.uk/schools-departments/institute-academic-development
http://www.ed.ac.uk/schools-departments/informatics
http://www.inf.ed.ac.uk/student-services/committees/teaching-committee/meetings/6th-march-2013/ILWHackReport.pdf
http://www.inf.ed.ac.uk/student-services/committees/teaching-committee/meetings/6th-march-2013/ILWHackReport.pdf
http://www.cs.cmu.edu/~CompThink/
http://www.slideshare.net/compatsch/quintin-cutts


addition, learning	to	use	a	programming	language	has	some	similarities	with	learning	any	foreign	language, say
Italian	or	Chinese: you	need	to	acquire	the	basic	vocabulary, some	syntax	and	some	idioms. And	you	need	to
practise, practise, practise!

My	main	experience	of	teaching	programming	has	been	acquired, sometimes	painfully, through	running	a	first
year	programming	course Object-Oriented	Programming	(INF1-OP)6 Informatics—in	effect, an	introduction	to
Java	programming, with	an	intake	of	between	150	and	250—at	the	School	of	Informatics	for	4	years. This	was
a	baptism	of	fire	for	me: it	was	the	first	time	I had	been	responsible	for	a	large	UG1	course, plus	I was	also
a	novice	at	Java: I had	to	learn	enough	to	be	able	to	teach	it. After	a	number	of	experiments	and	tweaks, the
structure	of	the	course	ended	up	as	follows:

• one	1-hour	lecture	per	week
• one	2-hour	lab	slot	per	week
• one	1-hour	tutorial	per	week	for	a	semester-long	team	project
• a	3-hour	end-of-semester	practical	exam

The	lab	slot	focussed	on	students	solving	a	graduated	set	of	programming	exercises	in	the	Informatics	comput-
ing	labs, and	feedback	was	provided	in	two	ways: a	team	of	demonstrators	was	available	to	answer	questions
and	to	proactively	engage	with	students	who	seemed	to	be	stuck; and	solutions	to	the	exercises	were	auto-
matically	marked	for	correctness	using	an	in-house	system	called	Infandango. In	general, my	bias	in	teaching
programming	was	towards	learning	by	doing, and	this	fitted	in	well	with	the	fact	that	the	final	exams	themselves
required	students	to	write	code.

3 Infandango

As	mentioned	above, the	Infandango	code	automarker	was	developed	within	the	School	of	Informatics	by	the
two	Teaching	Assistants	 on	 the	 INF-OP course: Mike	Hull7 and Daniel	Powell8. As	well	as	marking	code
submitted	by	students, Infandango	also	functioned	as	a	web-based	platform	for	publishing	exercises.9

Figure 1 shows	one	of	the	overview	pages	in	Infandango. In	order	to	interact	with	Infandango, you	have	to
be	logged	in, and	what	you	see	will	be	adjusted	to	your	history	of	working	with	the	system. In	Figure 1, the
lefthand	pane	presents	an	expanded	view	of	all	the	exercises	available	during	week	2	of	the	course, while	the
centre	pane	introduces	the	exercises, and	shows	which	ones	have	been	successfully	completed	so	far	by	the
user.

6http://tinyurl.com/inf1-oop
7http://www.anc.ed.ac.uk/dtc/index.php?option=com_people&func=showall&userid=359
8http://homepages.inf.ed.ac.uk/s0347677/
9For	a	brief	overview	of	 Infandango’s	design	and	architecture, see http://hdl.handle.net/1842/5206. The	code	 itself	 is

available	as	an	open	source	project	from https://bitbucket.org/ewan/infandango. Installation	and	basic	administration	doc-
umentation	can	be	found	at http://infandango.readthedocs.org.

2

http://tinyurl.com/inf1-oop
http://www.anc.ed.ac.uk/dtc/index.php?option=com_people&func=showall&userid=359
http://homepages.inf.ed.ac.uk/s0347677/
http://tinyurl.com/inf1-oop
http://www.anc.ed.ac.uk/dtc/index.php?option=com_people&func=showall&userid=359
http://homepages.inf.ed.ac.uk/s0347677/
http://hdl.handle.net/1842/5206
https://bitbucket.org/ewan/infandango
http://infandango.readthedocs.org


Figure 1: Infandango	Overview	Page

Let’s	see	what	might	have	been	involved	in	answering	Q2	(Largest	Double). The	page	for	this	exercise	is	shown
in	Figure 2. At	the	bottom	of	this	page, you	can	see	that	students	are	asked	to	write	some	Java	code	that	meets
the	stated	requirements, and	then	to	upload	their	answer	via	the	web. Once	this	has	been	done, the	student
gets	taken	to	the	page	shown	in	Figure 3. In	this	case, the	submitted	answer	is	incorrect, and	scores	0	marks, as
shown	in	Figure 4. By	clicking	on Result	of	Test, they	should	be	able	to	receive	a	more	detailed	analysis	of	why
their	code	failed	to	work	properly.10 After	a	period	of	embargo	(typically	about	one	week	after	the	exercises	are
released), they	should	also	be	able	to	access	a	model	answer. Students	are	allowed	to	resubmit	their	candidate
answers	as	many	times	as	they	wish, and	Figure 5 shows	the	page	when	the	third	submission	is	correct.

4 Infandango	Analytics

All	the	information	about	exercises	that	Infandango	presents	on	the	webpages	is	stored	in	a	database, and	like-
wise	all	the	information	about	the	tests	that	are	run	and	about	code	that	students	submit	is	stored. In	20011/12,
there	were	eight	weeks	of	coursework	exercises, each	of	which	comprised	around	five	distinct	exercises; each
exercise	typically	involved	running	several	 tests	against	 the	submitted	code; students	could	submit	multiple
times	for	the	same	exercise; and	practically	all	of	the	120	students	enrolled	submitted	at	least	one	exercise.
Towards	the	end	of	the	2011/12	semester, we	noted	that	Infandango	had	executed	58,000	code	tests. Conse-
quently, it	gives	us	a	rich	resource	of	data	to	study. During	my	secondment, I worked	with	two	Informatics	UG4
students	who	were	carrying	out	projects	on	the	(anonymised)	data	collected	during	academic	year	2011/12,

10The	feedback	that	a	student	receives	is	based	on	the	results	of	running	tests	against	their	code. By	default, the	level	of	detail	returned
if	the	test	fails	is	relatively	rudimentary, and	the	onus	is	on	the	writer	of	the	test	(e.g., the	course	instructor)	to	write	more	informative
feedback.

3



Figure 2: Infandango	Q2	Page

Figure 3: Infandango	Submitted	Page

namely	Joe	Bazalgette	and	Paul	Thomson. One	of	the	projects	(Bazalgette)	interested	in	exploring	a	range	of

4



Figure 4: Infandango	Feedback	Page

Figure 5: Infandango	Feedback	Page

correlations	in	the	data, such	as	between	the	number	of	submissions	per	question	and	exam	success, and	also

5



asking	whether	it	 is	possible	to	discern	significant	sub-clusters	of	students	based	on	their	mark	profile. The
second	project	(Thomson)	employed	machine	learning	techniques	to	predict	how	well	a	student	was	likely	to
perform	on	a	given	question	given	their	performance	on	the	preceding	questions; this	was	intended	to	form	the
basis	for	giving	students	accurate	feedback	on	their	progress. In	this	report, I will	cherrypick	some	the	more
striking	results	from	Bazalgette’s	project	report	(Exploring	Infandango: Applying	Data	Mining	to	an	Automatic
Java	Marking	System).

One	of	the	first	observations	was	that	there	was	a	strong	correlation	between	number	of	submissions	and	the
overall	marks	that	students	received	for	their	coursework	exams; that	is, more	submissions	meant	higher	marks.
This	of	course	seemed	quite	gratifying. Less	pleasing	was	the	lack	of	correlation	between	coursework	marks
on	 Infandango	and	 the	marks	 that	were	 independently	collected	 for	 the	end	of	course	exams, as	shown	in
Figure 6.11 We	were	curious	to	see	whether	there	might	be	stronger	correlation	if	we	restricted	attention	to

Figure 6: Coursework	marks	fail	to	correlate	with	exam	marks

students	without	prior	programming	experience, however	this	also	failed	to	hold	—	see	Figure 7.

11I apologise	for	the	poor	quality	of	these	graphs, which	were	cut-and-pasted	from	Bazalgette’s	final	report.

6



Figure 7: Coursework	marks	fail	to	correlate	with	exam	marks	for	students	without	prior	programming	experi-
ence

As	a	short	digression, I had	also	considered	the	hypothesis	that	exam	performance	would	correlate	strongly	with
the	level	of	prior	programming	experience. In	the	worst	case, this	might	mean	that	the	performance	of	students
with	little	experience	was	not	greatly	assisted	by	the	course, while	experienced	students	might	have	achieved
good	results	quite	independently	of	the	course. Although	experienced	students	did	indeed	tend	to	score	well	in
both	the	coursework	and	the	exam, performance	levels	by	students	with	little	or	no	programming	background
were	distributed	relatively	well	across	the	group. That	is, Figure 8b shows	that	a	fair	number	of	students, i.e,
represents	by	points	around	the	origin	of	the x axis, scoring	80%	or	above.

7



(a) Coursework (b) Exam

Figure 8: Distribution	of	results	vs.	different	levels	of	programming	experience

One	concern	which	surfaced	periodically	during	the	labs	was	that	a	minority	of	students	seemed	to	be	minimally
’fixing	up’	their	code	to	avoid	the	errors	that	Infandango	was	flagging, rather	than	thinking	through	the	deeper
issue	of	designing	their	code	to	address	the	requirements	of	the	exercise. Students	who	were	caught	in	a	loop
of	successively	tweaking	superficial	aspects	of	their	code	in	order	to	satisfy	Infandango	might	be	expected	to
submit	more	candidate	answers	to	a	given	exercise	than	those	who	analysed	the	task	at	a	more	conceptual
level. Some	evidence	that	supports	this	hypothesis	is	shown	in	Figure 9. This	shows	an	interesting	cluster	of

Figure 9: Higher	submission	rates	do	not	always	equate	to	exam	success

8



around	25	students	who	made	around	75–125	submissions	and	achieved	around	75%	or	more	in	the	exam. By
contrast, about	half	of	the	students	who	made	more	than	150	submissions	achieved	less	than	75%. This	may
be	reading	too	much	into	what	could	be	chance	distribution	of	results. Nevertheless, it	would	be	interesting	to
probe	this	effect	more	deeply, in	particular	by	properly	identifying	which	of	the	submissions	were resubmissions
to	the	same	exercise.

It’s	worth	noting	that	modifications	could	be	made	to	Infandango	to	discourage	students	from	getting	stuck	in
an	ineffective	learning	strategy, such	as	adding	allowing	the	system	to	block	further	resubmissions	for	a	fixed
period	once	a	threshold	had	been	reached.

5 Conclusion	and	Future	Steps

Overall, Infandango	proved	to	be	a	powerful	and	effective	framework	for	publishing	lab	exercises, marking
student	submissions, and	recording	the	results	for	reporting	and	further	analysis. The	design	of	the	system	is
modular, and	is	not	restricted	to	a	particular	programming	language. For	example, another	UG4	project	by
James	Vaughan	successfully	build	a	plug-in	that	allows	Infandango	to	process	student	code	written	in	Python
rather	 than	 Java. Nevertheless, there	 is	a	 range	of	 improvements	 that	could	be	made	 to	 the	system. These
include:

• Making	notification	of	coding	errors	more	informative	for	students.

• Presenting	students	with	different	problems, depending	on	the	outcome	of	tests.

• Using	analysis	of	student	submissions	to	trigger	support	and	remedial	intervention	by	the	lab	demonstra-
tor, tutor	or	course	instructor, as	appropriate.

One	of	the	original	goals	of	the	project	carried	out	by	Bazalgette	was	to	use	the	pattern	of	errors	in	a	student’s
submissions	to	identify	underlying	mistakes	in	their	conceptual	model	of	the	programming	task. For	example,
it	should	be	possible, in	principle, to	recognise	that	someone	is	struggling	with	exercises	that	require	certain
kinds	of	’loop’	constructs	in	the	program. Although	we	didn’t	achieve	this	goal, it	still	strikes	me	attainable	and
worth	pursuing	in	the	future.

9


	Introduction
	Teaching and Assessing Programming
	Infandango
	Infandango Analytics
	Conclusion and Future Steps

